Preserving Semantic Relations for Zero-Shot Learning
نویسندگان
چکیده
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned by the attributes using a set of relations. We devise objective functions to preserve these relations in the embedding space, thereby inducing semanticity to the embedding space. Through extensive experimental evaluation on five benchmark datasets, we demonstrate that inducing semanticity to the embedding space is beneficial for zero-shot learning. The proposed approach outperforms the state-ofthe-art on the standard zero-shot setting as well as the more realistic generalized zero-shot setting. We also demonstrate how the proposed approach can be useful for making approximate semantic inferences about an image belonging to a category for which attribute information is not available.
منابع مشابه
Zero-Shot Learning via Latent Space Encoding
Zero-Shot Learning (ZSL) is typically achieved by resorting to a class semantic embedding space to transfer the knowledge from the seen classes to unseen ones. Capturing the common semantic characteristics between the visual modality and the class semantic modality (e.g., attributes or word vector) is a key to the success of ZSL. In this paper, we present a novel approach called Latent Space En...
متن کاملZero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Network
We propose a novel framework called SemanticsPreserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem — semantic loss — in the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are nondiscriminati...
متن کاملZero-Shot Learning and Clustering for Semantic Utterance Classification
We propose two novel zero-shot learning methods for semantic utterance classification (SUC) using deep learning. Both approaches rely on learning deep semantic embeddings from a large amount of Query Click Log data obtained from a search engine. Traditional semantic utterance classification systems require large amounts of labelled data, whereas our proposed methods make use of the structure of...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملTransductive Multi-label Zero-shot Learning
Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018